Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 390
Filtrar
1.
Eur J Pharm Sci ; 196: 106758, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38570054

RESUMO

Increasing evidence suggests a beneficial role of vitamin D (VitD) supplementation in addressing the widespread VitD deficiency, but currently used VitD3 formulations present low bioavailability and toxicity constrains. Hence, poly(L-lactide-co-glycolide) (PLGA) nanoparticles (NPs), solid-lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) were investigated to circumvent these issues. PLGA NPs prepared by emulsification or nanoprecipitation presented 74 or 200 nm, and association efficiency (AE) of 68 % and 17 %, respectively, and a rapid burst release of VitD3. Both SLN and NLCs presented higher polydispersity and larger NPs size, around 500 nm, which could be reduced to around 200 nm by use of hot high-pressure homogenization in the case of NLCs. VitD3 was efficiently loaded in both SLNs and NLCs with an AE of 82 and 99 %, respectively. While SLNs showed burst release, NLCs allowed a sustained release of VitD3 for nearly one month. Furthermore, NLCs showed high stability with maintenance of VitD3 loading for up to one month at 4 °C and no cytotoxic effects on INS-1E cells up to 72 h. A trending increase (around 30 %) on glucose-dependent insulin secretion was observed by INS-1E cells pre-treated with VitD3. This effect was consistently observed in the free form and after loading on NLCs. Overall, this work contributed to further elucidation on a suitable delivery system for VitD3 and on the effects of this metabolite on ß cell function.

2.
ACS Pharmacol Transl Sci ; 7(3): 888-898, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38481698

RESUMO

Resveratrol (RES) is a biopharmaceutical classification system (BCS) class II compound with low solubility and high permeability. Several strategies have been explored to overcome the low bioavailability of RES, making the formation of solid dispersions (SDs) one of the most promising. This study aimed at the development of a RES third-generation SD prepared by lyophilization as a strategy to improve RES solubility, dissolution, and oral bioavailability. Eudragit E PO was selected as the hydrophilic carrier in a 1:2 (RES:carrier) ratio, and Gelucire 44/14 as the surfactant, at 16% (w/w) of RES. Differential scanning calorimetry (DSC), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), polarized light microscopy (PLM), X-ray powder diffraction (XRPD), and particle size distribution (Morphologi 4 Malvern) were used for solid-state characterization and to confirm the conversion of RES to the amorphous state in the SD. Third-generation SD presented an 8-, 12-, and 8-fold increase of RES solubilized compared to pure RES at pH 1.2, 4.5, and 6.8, respectively, and a 10-fold increase compared to the physical mixture (PM), at pH 6.8, after 24 h. In the gastric environment, the dissolution rate of third-generation SD and PM was similar, and 2-fold higher than pure RES after 30 min, while at pH 6.8, third-generation SD presented approximately a 5-fold increase in comparison to pure RES and PM. Third-generation SD presented higher in vitro intestinal permeability compared to its PM and second-generation SD (without Gelucire 44/14). A 2.4 and 1.7-fold increase of RES permeated, respectively in Caco-2 and Caco-2/HT2-MTX models, was obtained with third-generation SD compared to PM, after 3 h. Third-generation SD allowed a 3-fold increase of RES bioavailability compared to second-generation SD, after oral administration of 200 mg/kg of RES to Wistar rats. Enhanced RES oral bioavailability was obtained not only by solubility and dissolution improvement, but also by the interference of Gelucire 44/14, with RES metabolism, and inhibition of P-gp-mediated efflux. The presence of excipients like Gelucire 44/14 in the SD allows for greater bioavailability of orally administered RES, making it easier to obtain some of the physiological benefits demonstrated by this molecule.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38500351

RESUMO

Type 2 diabetes mellitus (T2DM) is a metabolic disorder that arises when the body cannot respond fully to insulin, leading to impaired glucose tolerance. Currently, the treatment embraces non-pharmacological actions (e.g., diet and exercise) co-associated with the administration of antidiabetic drugs. Metformin is the first-line treatment for T2DM; nevertheless, alternative therapeutic strategies involving glucagon-like peptide-1 (GLP-1) analogs have been explored for managing the disease. GLP-1 analogs trigger insulin secretion and suppress glucagon release in a glucose-dependent manner thereby, reducing the risk of hyperglycemia. Additionally, GLP-1 analogs have an extended plasma half-life compared to the endogenous peptide due to their high resistance to degradation by dipeptidyl peptidase-4. However, GLP-1 analogs are mainly administered via subcutaneous route, which can be inconvenient for the patients. Even considering an oral delivery approach, GLP-1 analogs are exposed to the harsh conditions of the gastrointestinal tract (GIT) and the intestinal barriers (mucus and epithelium). Hereupon, there is an unmet need to develop non-invasive oral transmucosal drug delivery strategies, such as the incorporation of GLP-1 analogs into nanoplatforms, to overcome the GIT barriers. Nanotechnology has the potential to shield antidiabetic peptides against the acidic pH and enzymatic activity of the stomach. In addition, the nanoparticles can be coated and/or surface-conjugated with mucodiffusive polymers and target intestinal ligands to improve their transport through the intestinal mucus and epithelium. This review focuses on the main hurdles associated with the oral administration of GLP-1 and GLP-1 analogs, and the nanosystems developed to improve the oral bioavailability of the antidiabetic peptides. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.


Assuntos
Diabetes Mellitus Tipo 2 , Peptídeo 1 Semelhante ao Glucagon , Humanos , Peptídeo 1 Semelhante ao Glucagon/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Nanomedicina , Hipoglicemiantes/uso terapêutico , Peptídeos
4.
Adv Drug Deliv Rev ; 208: 115295, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38527625

RESUMO

Melanoma, the deadliest form of skin cancer, poses a significant clinical challenge for the development of effective treatments. Conventional in vivo animal studies have shown limited translational relevance to humans, raising strength to pre-clinical models for melanoma research. This review provides an in-depth analysis of alternative pre-clinical models including in vitro and ex vivo platforms such as reconstructed skin, spheroids, organoids, organotypic models, skin-on-a-chip, and bioprinting. Through a comprehensive analysis, the specific attributes, advantages, and limitations of each model are elucidated. It discusses the points related to the uniqueness advantages, from capturing complex interactions between melanoma cells and their microenvironment to enabling high-throughput drug screening and personalized medicine approaches. This review is structured covering firstly the roadmap to identify the co-occurrence of discovering new melanoma treatments and the development of its models, secondly it covers a comparative between the most used models followed by a section discussing each of them: the in vitro and ex vivo models. It intends to serve as an asset for researchers of melanoma field and clinicians involved in melanoma therapy, offering insights into the diverse preclinical models available for optimizing their integration into the translational pipeline.


Assuntos
Melanoma , Neoplasias Cutâneas , Animais , Humanos , Melanoma/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Organoides , Ensaios de Triagem em Larga Escala , Microambiente Tumoral
5.
ACS Nano ; 18(14): 10088-10103, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38535625

RESUMO

Advanced-stage solid primary tumors and metastases often express mucin 16 (MUC16), carrying immature glycans such as the Tn antigen, resulting in specific glycoproteoforms not found in healthy human tissues. This presents a valuable approach for designing targeted therapeutics, including cancer glycovaccines, which could potentially promote antigen recognition and foster the immune response to control disease spread and prevent relapse. In this study, we describe an adjuvant-free poly(lactic-co-glycolic acid) (PLGA)-based nanoglycoantigen delivery approach that outperforms conventional methods by eliminating the need for protein carriers while exhibiting targeted and adjuvant properties. To achieve this, we synthesized a library of MUC16-Tn glycoepitopes through single-pot enzymatic glycosylation, which were then stably engrafted onto the surface of PLGA nanoparticles, generating multivalent constructs that better represent cancer molecular heterogeneity. These glycoconstructs demonstrated affinity for Macrophage Galactose-type Lectin (MGL) receptor, known to be highly expressed by immature antigen-presenting cells, enabling precise targeting of immune cells. Moreover, the glycopeptide-grafted nanovaccine candidate displayed minimal cytotoxicity and induced the activation of dendritic cells in vitro, even in the absence of an adjuvant. In vivo, the formulated nanovaccine candidate was also nontoxic and elicited the production of IgG specifically targeting MUC16 and MUC16-Tn glycoproteoforms in cancer cells and tumors, offering potential for precise cancer targeting, including targeted immunotherapies.


Assuntos
Nanopartículas , Neoplasias , Humanos , Lectinas/metabolismo , Glicosilação , Glicopeptídeos/metabolismo , Neoplasias/terapia , Neoplasias/metabolismo , Imunoterapia/métodos , Células Dendríticas
6.
J Control Release ; 367: 540-556, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301927

RESUMO

Cancer presents a high mortality rate due to ineffective treatments and tumour relapse with progression. Cancer vaccines hold tremendous potential due to their capability to eradicate tumour and prevent relapse. In this study, we present a novel glycovaccine for precise targeting and immunotherapy of aggressive solid tumours that overexpress CD44 standard isoform (CD44s) carrying immature Tn and sialyl-Tn (sTn) O-glycans. We describe an enzymatic method and an enrichment strategy to generate libraries of well-characterized cancer-specific CD44s-Tn and/or sTn glycoproteoforms, which mimic the heterogeneity found in tumours. We conjugated CD44-Tn-derived glycopeptides with carrier proteins making them more immunogenic, with further demonstration of the importance of this conjugation to overcome the glycopeptides' intrinsic toxicity. We have optimized the glycopeptide-protein maleimide-thiol conjugation chemistry to avoid undesirable cross-linking between carrier proteins and CD44s glycopeptides. The resulting glycovaccines candidates were well-tolerated in vivo, inducing both humoral and cellular immunity, including immunological memory. The generated antibodies exhibited specific reactivity against synthetic CD44s-Tn glycopeptides, CD44s-Tn glycoengineered cells, and human tumours. In summary, we present a promising prototype of a cancer glycovaccine for future therapeutical pre-clinical efficacy validation.


Assuntos
Vacinas Anticâncer , Neoplasias , Humanos , Vacinas Combinadas , Antígenos Glicosídicos Associados a Tumores/química , Glicoconjugados , Neoplasias/terapia , Imunoterapia , Glicopeptídeos/química , Proteínas de Transporte , Recidiva , Receptores de Hialuronatos
7.
Nanomedicine ; 57: 102734, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38295912

RESUMO

Basal cell carcinoma (BCC) is the most common form of human cancer, and treatment usually involves surgery, with alternative strategies being needed. We propose the use of carbopol hydrogels (HG) for topical administration of nanographene oxide (GOn) and partially-reduced nanographene oxide (p-rGOn) for photothermal therapy (PTT) of BCC. GOn and p-rGOn incorporated into the HG present lateral sizes ∼200 nm, being stable for 8 months. After 20 min irradiation with an infrared (IR) photothermal therapy lamp (15.70 mW cm-2), GOn-HG increased temperature to 44.7 °C, while p-rGOn-HG reached 47.0 °C. Human skin fibroblasts (HFF-1) cultured with both hydrogels (250 µg mL-1) maintained their morphology and viability. After 20 min IR irradiation, p-rGOn HG (250 µg mL-1) completely eradicated skin cancer cells (A-431). Ex vivo human skin permeability tests showed that the materials can successfully achieve therapeutic concentrations (250 µg mL-1) inside the skin, in 2.0 h for GO HG or 0.5 h for p-rGOn HG.


Assuntos
Grafite , Neoplasias Cutâneas , Humanos , Grafite/farmacologia , Composição de Medicamentos , Fototerapia , Neoplasias Cutâneas/tratamento farmacológico , Hidrogéis , Óxidos , Linhagem Celular Tumoral
8.
J Control Release ; 366: 621-636, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38215986

RESUMO

Semaglutide is the first oral glucagon-like peptide-1 (GLP-1) analog commercially available for the treatment of type 2 diabetes. In this work, semaglutide was incorporated into poly(lactic-co-glycolic acid)-poly(ethylene glycol) (PLGA-PEG) nanoparticles (NPs) to improve its delivery across the intestinal barrier. The nanocarriers were surface-decorated with either a peptide or an affibody that target the human neonatal Fc receptor (hFcRn), located on the luminal cell surface of the enterocytes. Both ligands were successfully conjugated with the PLGA-PEG via maleimide-thiol chemistry and thereafter, the functionalized polymers were used to produce semaglutide-loaded NPs. Monodisperse NPs with an average size of 170 nm, neutral surface charge and 3% of semaglutide loading were obtained. Both FcRn-targeted NPs exhibited improved interaction and association with Caco-2 cells (cells that endogenously express the hFcRn), compared to non-targeted NPs. Additionally, the uptake of FcRn-targeted NPs was also observed to occur in human intestinal organoids (HIOs) expressing hFcRn through microinjection into the lumen of HIOs, resulting in potential increase of semaglutide permeability for both ligand-functionalized nanocarriers. Herein, our study demonstrates valuable data and insights that the FcRn-targeted NPs has the capacity to promote intestinal absorption of therapeutic peptides.


Assuntos
Diabetes Mellitus Tipo 2 , Peptídeos Semelhantes ao Glucagon , Lactatos , Nanopartículas , Polietilenoglicóis , Recém-Nascido , Humanos , Células CACO-2 , Peptídeos , Receptores Fc
9.
Biochim Biophys Acta Mol Basis Dis ; 1870(3): 167042, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38296115

RESUMO

Inflammatory bowel disease (IBD) encompasses a set of chronic inflammatory conditions, namely Crohn's disease and ulcerative colitis. Despite all advances in the management of IBD, a definitive cure is not available, largely due to a lack of a holistic understanding of its etiology and pathophysiology. Several in vitro, in vivo, and ex vivo models have been developed over the past few decades in order to abbreviate remaining gaps. The establishment of reliable and predictable in vitro intestinal inflammation models may indeed provide valuable tools to expedite and validate the development of therapies for IBD. Three-dimensional (3D) models provide a more accurate representation of the different layers of the intestine, contributing to a stronger impact on drug screening and research on intestinal inflammation, and bridging the gap between in vitro and in vivo research. This work provides a critical overview on the state-of-the-art on existing 3D models of intestinal inflammation and discusses the remaining challenges, providing insights on possible pathways towards achieving IBD mimetic models. We also address some of the main challenges faced by implementing cell culture models in IBD research while bearing in mind clinical translational aspects.


Assuntos
Colite Ulcerativa , Doença de Crohn , Doenças Inflamatórias Intestinais , Humanos , Doenças Inflamatórias Intestinais/etiologia , Doença de Crohn/diagnóstico , Doença de Crohn/etiologia , Doença de Crohn/terapia , Técnicas de Cultura de Células , Inflamação/complicações
10.
ACS Appl Mater Interfaces ; 16(4): 4333-4347, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38240200

RESUMO

Nonmelanoma skin cancer (NMSC) is the most common cancer worldwide, among which 80% is basal cell carcinoma (BCC). Current therapies' low efficacy, side effects, and high recurrence highlight the need for alternative treatments. In this work, a partially reduced nanographene oxide (p-rGOn) developed in our laboratory was used. It has been achieved through a controlled reduction of nanographene oxide via UV-C irradiation that yields small nanometric particles (below 200 nm) that preserve the original water stability while acquiring high light-to-heat conversion efficiency. The latter is explained by a loss of carbon-oxygen single bonds (C-O) and the re-establishment of sp2 carbon bonds. p-rGOn was incorporated into a Carbopol hydrogel together with the anticancer drug 5-fluorouracil (5-FU) to evaluate a possible combined PTT and chemotherapeutic effect. Carbopol/p-rGOn/5-FU hydrogels were considered noncytotoxic toward normal skin cells (HFF-1). However, when A-431 skin cancer cells were exposed to NIR irradiation for 30 min in the presence of Carbopol/p-rGOn/5-FU hydrogels, almost complete eradication was achieved after 72 h, with a 90% reduction in cell number and 80% cell death of the remaining cells after a single treatment. NIR irradiation was performed with a light-emitting diode (LED) system, developed in our laboratory, which allows adjustment of applied light doses to achieve a safe and selective treatment, instead of the standard laser systems that are associated with damages in the healthy tissues in the tumor surroundings. Those are the first graphene-based materials containing pharmaceutical formulations developed for BCC phototherapy.


Assuntos
Grafite , Fotoquimioterapia , Neoplasias Cutâneas , Humanos , Grafite/química , Fluoruracila/farmacologia , Composição de Medicamentos , Linhagem Celular Tumoral , Fototerapia , Neoplasias Cutâneas/tratamento farmacológico , Carbono , Óxidos , Hidrogéis/farmacologia , Hidrogéis/química
11.
Adv Mater ; 36(2): e2307673, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37961933

RESUMO

Biomaterials are extensively used to mimic cell-matrix interactions, which are essential for cell growth, function, and differentiation. This is particularly relevant when developing in vitro disease models of organs rich in extracellular matrix, like the liver. Liver disease involves a chronic wound-healing response with formation of scar tissue known as fibrosis. At early stages, liver disease can be reverted, but as disease progresses, reversion is no longer possible, and there is no cure. Research for new therapies is hampered by the lack of adequate models that replicate the mechanical properties and biochemical stimuli present in the fibrotic liver. Fibrosis is associated with changes in the composition of the extracellular matrix that directly influence cell behavior. Biomaterials could play an essential role in better emulating the disease microenvironment. In this paper, the recent and cutting-edge biomaterials used for creating in vitro models of human liver fibrosis are revised, in combination with cells, bioprinting, and/or microfluidics. These technologies have been instrumental to replicate the intricate structure of the unhealthy tissue and promote medium perfusion that improves cell growth and function, respectively. A comprehensive analysis of the impact of material hints and cell-material interactions in a tridimensional context is provided.


Assuntos
Bioimpressão , Microfluídica , Humanos , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Cirrose Hepática , Fibrose , Bioimpressão/métodos , Impressão Tridimensional , Engenharia Tecidual/métodos
12.
Small ; : e2306137, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37963826

RESUMO

Photothermal therapy (PTT) and magnetic hyperthermia therapy (MHT) using 2D nanomaterials (2DnMat) have recently emerged as promising alternative treatments for cancer and bacterial infections, both important global health challenges. The present review intends to provide not only a comprehensive overview, but also an integrative approach of the state-of-the-art knowledge on 2DnMat for PTT and MHT of cancer and infections. High surface area, high extinction coefficient in near-infra-red (NIR) region, responsiveness to external stimuli like magnetic fields, and the endless possibilities of surface functionalization, make 2DnMat ideal platforms for PTT and MHT. Most of these materials are biocompatible with mammalian cells, presenting some cytotoxicity against bacteria. However, each material must be comprehensively characterized physiochemically and biologically, since small variations can have significant biological impact. Highly efficient and selective in vitro and in vivo PTTs for the treatment of cancer and infections are reported, using a wide range of 2DnMat concentrations and incubation times. MHT is described to be more effective against bacterial infections than against cancer therapy. Despite the promising results attained, some challenges remain, such as improving 2DnMat conjugation with drugs, understanding their in vivo biodegradation, and refining the evaluation criteria to measure PTT or MHT effects.

13.
Pharmaceutics ; 15(11)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38004589

RESUMO

The "Warburg effect" consists of a metabolic shift in energy production from oxidative phosphorylation to glycolysis. The continuous activation of glycolysis in cancer cells causes rapid energy production and an increase in lactate, leading to the acidification of the tumour microenvironment, chemo- and radioresistance, as well as poor patient survival. Nevertheless, the mitochondrial metabolism can be also involved in aggressive cancer characteristics. The metabolic differences between cancer and normal tissues can be considered the Achilles heel of cancer, offering a strategy for new therapies. One of the main causes of treatment resistance consists of the increased expression of efflux pumps, and multidrug resistance (MDR) proteins, which are able to export chemotherapeutics out of the cell. Cells expressing MDR proteins require ATP to mediate the efflux of their drug substrates. Thus, inhibition of the main energy-producing pathways in cancer cells, not only induces cancer cell death per se, but also overcomes multidrug resistance. Given that most anticancer drugs do not have the ability to distinguish normal cells from cancer cells, a number of drug delivery systems have been developed. These nanodrug delivery systems provide flexible and effective methods to overcome MDR by facilitating cellular uptake, increasing drug accumulation, reducing drug efflux, improving targeted drug delivery, co-administering synergistic agents, and increasing the half-life of drugs in circulation.

14.
Biomed Pharmacother ; 169: 115841, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37944442

RESUMO

The stratum corneum (SC) is the skin's outermost layer, organized by clusters of corneocytes among a lipid matrix, acting as a barrier. This "brick and mortar" organization is modified in many skin diseases. We proposed a lesioned-skin model for assessing the permeability of topical formulations and the impact of skin integrity on the permeability of molecules. We anticipate that removal of the SC compromises the skin barrier function, making it more permeable, affecting the biopharmaceutics of topical formulations. By stripping with 25 strips (Corneofix®), the thickness of the SC was considerably reduced, exposing the viable epidermis. Transversal and upper views of the skin by electronic microscopy and histology confirm the removal of the SC. After, we evaluated the permeability of tacrolimus (Protopic®, 0.1 % and 0.03 %) by HPLC-UV. The non-lesioned skin presented 20-25 % of tacrolimus in the SC and no drug permeated through the skin's inner layers. Contrary, the lesioned-skin model allowed the permeation of tacrolimus to the epidermis, dermis, and also in the receptor medium. These results highlight the importance of using diseased skin tissue as opposed to normal skin when assessing the permeability of pharmaceutical formulations for local topical delivery, closely mimicking the occurred events in clinical scenario.


Assuntos
Dermatopatias , Tacrolimo , Humanos , Preparações Farmacêuticas , Tacrolimo/farmacologia , Pele , Epiderme , Permeabilidade
15.
ACS Pharmacol Transl Sci ; 6(10): 1544-1560, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37854630

RESUMO

Type 1 diabetes (T1D) is an incurable condition with an increasing incidence worldwide, in which the hallmark is the autoimmune destruction of pancreatic insulin-producing ß cells. Cathelicidin-based peptides have been shown to improve ß cell function and neogenesis and may thus be relevant while developing T1D therapeutics. In this work, a cathelicidin-derived peptide, LLKKK18, was loaded in poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs), surface-functionalized with exenatide toward a GLP-1 receptor, aiming the ß cell-targeted delivery of the peptide. The NPs present a mean size of around 100 nm and showed long-term stability, narrow size distribution, and negative ζ-potential (-10 mV). The LLKKK18 association efficiency and loading were 62 and 2.9%, respectively, presenting slow and sustained in vitro release under simulated physiologic fluids. Glucose-stimulated insulin release in the INS-1E cell line was observed in the presence of the peptide. In addition, NPs showed a strong association with ß cells from isolated rat islets. After administration to diabetic rats, NPs induced a significant reduction of the hyperglycemic state, an improvement in the pancreatic insulin content, and glucose tolerance. Also remarkable, a considerable increase in the ß cell mass in the pancreas was observed. Overall, this novel and versatile nanomedicine showed glucoregulatory ability and can pave the way for the development of a new generation of therapeutic approaches for T1D treatment.

16.
J Nanobiotechnology ; 21(1): 357, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37784150

RESUMO

Colorectal cancer (CRC) is one of the deadliest cancers worldwide, with the 5 year survival rate in metastatic cases limited to 12%. The design of targeted and effective therapeutics remains a major unmet clinical need in CRC treatment. Carcinoembryonic antigen (CEA), a glycoprotein overexpressed in most colorectal tumors, may constitute a promising molecule for generating novel CEA-targeted therapeutic strategies for CRC treatment. Here, we developed a smart nanoplatform based on chemical conjugation of an anti-CEA single-chain variable fragment (scFv), MFE-23, with PLGA-PEG polymers to deliver the standard 5-Fluorouracil (5-FU) chemotherapy to CRC cells. We confirmed the specificity of the developed CEA-targeted NPs on the internalization by CEA-expressing CRC cells, with an enhance of threefold in the cell uptake. Additionally, CEA-targeted NPs loaded with 5-FU induced higher cytotoxicity in CEA-expressing cells, after 24 h and 48 h of treatment, reinforcing the specificity of the targeted NPs. Lastly, the safety of CEA-targeted NPs loaded with 5-FU was evaluated in donor-isolated macrophages, with no relevant impact on their metabolic activity nor polarization. Altogether, this proof of concept supports the CEA-mediated internalization of targeted NPs as a promising chemotherapeutic strategy for further investigation in different CEA-associated cancers and respective metastatic sites.Authors: Please confirm if the author names are presented accurately and in the correct sequence (given name, middle name/initial, family name). Author 1 Given name: [Maria José] Last name [Silveira]. Author 7 Given name: [Maria José] Last name [Oliveira]. Also, kindly confirm the details in the metadata are correctokAffiliations: Please check and confirm that the authors and their respective affiliations have been correctly identified and amend if necessary.ok.


Assuntos
Neoplasias Colorretais , Nanopartículas , Anticorpos de Cadeia Única , Humanos , Antígeno Carcinoembrionário/metabolismo , Anticorpos de Cadeia Única/uso terapêutico , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Neoplasias Colorretais/metabolismo , Nanopartículas/química
17.
Int J Pharm ; 647: 123508, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37832705

RESUMO

Vulvovaginal candidiasis (VVC) persists as a worrying women's healthcare issue, often relying on suboptimal therapeutics. Novel intravaginal dosage forms focusing on improving patient acceptability and featuring improved biopharmaceutical properties could be interesting alternatives to available antifungal products. Different formulations of sponges based on chitosan (Ch), with or without crosslinking and co-formulated with poly(N-vinylcaprolactam) (PNVCL), were produced for the topical administration of clotrimazole (CTZ) and further tested for physicochemical properties, drug release, cytotoxicity and antifungal activity. Results showed that high amounts of CTZ (roughly 30-50 %) could be incorporated into sponges obtained by using a simple freeze-drying methodology. Cross-linking of Ch with ammonia affected the morphology and mechanical features of sponges and shifted the release profile from sustained (around 20 % and 60 % drug released after 4 h and 24 h, respectively) to fast-releasing (over 90 % at 4 h). The combination of PNVCL with non-crosslinked Ch also allowed tuning drug release, namely by increasing the initial amount of CTZ released in simulated vaginal fluid (roughly 40 % after 4 h), as compared to sponges featuring only non-crosslinked Ch. All formulations displayed low toxicity to cell lines derived from the female genital tract, with viability values kept above 70 % after 24 h incubation with sponge extracts. These also allowed maintaining the rapid onset of the antifungal effects of CTZ at minimum inhibitory concentrations ranging from 0.5 to 16 µg/mL for a panel of six different Candida spp. strains. Overall, proposed sponge formulations appear to be promising alternatives for the safe and effective management of VVC.


Assuntos
Candidíase Vulvovaginal , Quitosana , Feminino , Humanos , Candidíase Vulvovaginal/tratamento farmacológico , Clotrimazol , Antifúngicos/química , Quitosana/farmacologia , Administração Tópica , Candida albicans
18.
Acta Biomater ; 170: 142-154, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37586448

RESUMO

Gastric cancer (GC) is the fourth leading cause of cancer-related deaths worldwide and, therefore, it is urgent to develop new and more efficient therapeutic approaches. Foretinib (FRT) is an oral multikinase inhibitor targeting MET (hepatocyte growth factor receptor) and RON (recepteur d'origine nantais) receptor tyrosine kinases (RTKs) that has been used in clinical trials for several solid tumors. Targeted uptake of therapeutic polymeric nanoparticles (NPs) represents a powerful approach in cancer cell drug delivery. Previously, a nanodelivery system composed of polymeric NPs functionalized with B72.3 antibody, which targets the tumor-associated antigen Sialyl-Tn (STn), has been developed. Herein, these NPs were loaded with FRT to evaluate its capacity in delivering the drug to multicellular tumors spheroids (MCTS) and mouse models. The data indicated that B72.3 functionalized FRT-loaded PLGA-PEG-COOH NPs (NFB72.3) specifically target gastric MCTS expressing the STn glycan (MKN45 SimpleCell (SC) cells), leading to a decrease in phospho-RTKs activation and reduced cell viability. In vivo evaluation using MKN45 SC xenograft mice revealed that NFB72.3 were able to decrease tumor growth, reduce cell proliferation and tumor necrosis. NFB72.3-treated tumors also showed inactivation of phospho-MET and phospho-RON. This study demonstrates the value of using NPs targeting STn for FRT delivery, highlighting its potential as a therapeutic application in GC. STATEMENT OF SIGNIFICANCE: Despite the advances in gastric cancer therapeutics, it remains one of the diseases with the highest incidence and mortality in the world. Combining targeted therapies with a controlled drug release is an attractive strategy to reduce drug cytotoxic effects and improve specific drug delivery efficiency to the cancer cells. Thus, we developed nanoparticles loaded with a tyrosine kinase inhibitor and targeting a specific tumor glycan exclusive of cancer cells. In in vivo gastric cancer xenograft mice models, these nanoparticles efficiently reduced tumor growth, cell proliferation and tumor necrosis area and inactivated phosphorylation of targeting receptors. This approach represents an innovative therapeutic strategy with high impact in gastric cancer.


Assuntos
Nanopartículas , Neoplasias Gástricas , Humanos , Animais , Camundongos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Polímeros/uso terapêutico , Polissacarídeos , Necrose , Linhagem Celular Tumoral
20.
Eur J Pharm Sci ; 190: 106560, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37557927

RESUMO

Most of the 3D breast tumor models used in drug screening studies only comprise tumor cells, keeping out other essential cell players of the tumor microenvironment. Tumor-associated macrophages and fibroblasts are frequently correlated with tumor progression and therapy resistance, and targeting these cells at the tumor site has been appointed as a promising therapeutic strategy. However, the translation of new therapies to the clinic has been hampered by the absence of cellular models that more closely mimic the features of in vivo breast tumor microenvironment. Therefore, the development of innovative 3D models able to provide consistent and predictive responses about the in vivo efficacy of novel therapeutics is still an unmet preclinical need. Herein, we have established an in vitro 3D heterotypic spheroid model including MCF-7 breast tumor cells, human mammary fibroblasts and human macrophages. To establish this model, different cell densities have been combined and characterized through the evaluation of the spheroid size and metabolic activity, as well as histological and immunohistochemistry analysis of the 3D multicellular structures. The final optimized 3D model consisted in a multicellular spheroid seeded at the initial density of 5000 cells and cell ratio of 1:2:1 (MCF-7:monocytes:fibroblasts). Our model recapitulates several features of the breast tumor microenvironment, including the formation of a necrotic core, spatial organization, and extracellular matrix production. Further, it was validated as a platform for drug screening studies, using paclitaxel, a currently approved drug for breast cancer treatment, and Gefitinib, a chemotherapeutic approved for lung cancer and in preclinical evaluation for breast cancer. Generally, the impact on the cell viability of the 3D model was less evident than in 2D model, reinforcing the relevance of such complex 3D models in addressing novel treatment approaches. Overall, the use of a 3D heterotypic spheroid of breast cancer could be a valuable tool to predict the therapeutic effect of new treatments for breast cancer patients, by recapitulating key features of the breast cancer microenvironment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...